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The main aim of the paper is to apply the image processing inter-
pretation of the Maximum Entropy (MaxEnt) method to the Kirman
(1993) model and the Abrams and Strogatz (20003) voter model as
implemented by Stauffer et al. (2007). This follows the initial work in
Barde 2012 which showed that the Schelling (1969) model of segrega-
tion can be predicted with the methodology. The discussant does
point out some of the major issues that are associated with the metho-
dology, many of which I agree with. The most important comment is
probably the fact that more exploratory work is needed to establish a
taxonomy of valid assumptions for corresponding statistical proper-
ties. Having said this, I feel that two important clarifications are
needed.

My first comment relates to the claim that the assumptions or
simplifications required to obtain the MaxEnt solution are arbitrary.
Given some data d (the initial condition in agent-based models), the
basic formulation for obtaining the prediction μ the maximum
entropy problem is given by:

The first part of the expression, S(μ | m) is the relative entropy of
with respect to a model m and (d | μ ) is the likelihood that the initial
condition d is a noisy version of the prediction μ . For any given
problem, two terms need to be specified: the model term m and log
likelihood  (d | μ ). While there is an element of ‘educated guessing’ in
specifying these terms, this is not as arbitrary as the discussant claims. 

— The model term m is a diffusion term which specifies how far the
prediction can stray from initial condition, and this is the term that
controls for time in the system. Intuitively, if very little time has
elapsed, one should used a very peaked m, as μ  will be very close to d.
Conversely, long time horizons are represented with a flatter m. It is

 ( ) ( )| |S m dmax
μ
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also important to note that m can have several dimensions, depending
on the nature of the problem: one dimensional for the ants model,
two dimensions for the Schelling and voter models. 

— The likelihood term  depends on the nature of the path linking
the initial condition to the predicted state of the system. The image-
reconstruction algorithm treats μ as the true image to be discovered
and d as a noisy version of μ . This time-reversed path is conditioned
on the fact that if the sequence of actions taking the system from its
initial condition to its equilibrium distribution is best-response (a
common assumption in economics), then the reverse path is effec-
tively a noise process. The likelihood term is therefore determined by
knowledge of the updating process, which determines the implicit
noise process in the reversed path. 

Both these terms are determined from the updating rules of the
system, and are therefore not as arbitrary as it may seem. It is true that
if little information is available (for instance if the exact transition
probabilities are unknown), they must be approximated. For instance,
in the generic version used for the voter model, both a gaussian likeli-
hood (d | μ ), i.e. a gaussian noise process, and gaussian correlations
over two-dimensional space for the model term m are assumed as an
approximation. However this can be refined if more information is
available from the updating process. This is the case in the ants model,
where the transition probabilities are well known. In this case the
model term is the diffusion of a stopped random walk rather than a
gaussian diffusion and the likelihood is designed directly from a path
integral of the transition probabilities.

Clearly, MaxEnt is no miracle solution: if the researcher has no
information about the dynamic updating process of a system, then
there is no way that knowledge of the initial condition alone can lead
to a decent prediction of future states. In the Kirman ant model, for
instance, the initial condition at t = 0 is simply a value  repre-
senting the share of ants of a certain colour. If the researcher is
ignorant of the recruitment mechanisms, then x alone does not
provide much information on the stable distribution of the system at a
later time t = n. The central argument for using MaxEnt in the context
of agent-based models is precisely that the updating rules of the
system are known ex ante, as they are provided by the researcher.

My second comment is would be that the aim of the methodology
is not to replace the traditional Monte-Carlo methods used in agent-
based models but instead to provide a complement. The methodology
is analytical in so far as the derivation of the maximum entropy
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problem is obtained from a rigourous Bayesian approach however, as
mentioned by the discussant, in most cases a numerical methodology
is required to solve for the solution of the problem. Furthermore, as
pointed out by the discussant, the three simple models analysed so far
with MaxEnt are a far cry from the complex systems routinely used in
the agent-based literature. So given this, what is the usefulness or
purpose of the proposed methodology?

An important application in my opinion is to provide a tool for
categorising types of agent-based models according to the strength of
their convergence to a stable distribution. A key finding of the paper,
as well as the companion work on the Schelling model is that while
the three models are clearly stochastic, the fact that they are amenable
to MaxEnt prediction reveals that they are much more predictable that
one might think. In technical terms, this is related to the fact that the
image reconstruction MaxEnt algorithm works only if one is able to
treat the reversed time-evolution of the system as a noise process, indi-
cating that the time-evolution is in fact a finite improvement path. I
agree with the discussant that more work is needed

In the future, rather than providing a direct solution tool for large
agent-based model, a potentially important application for MaxEnt is
the prediction of those component modules of the larger model that
are amenable to MaxEnt. In interesting possibility in this regard is to
take advantage of the faster execution speed of the methodology
compared to Monte-Carlo to directly provide agents in the model with
expectations, by using MaxEnt on the current state to obtain predicted
future values for key state variables. Similarly, it could be used to
speed-up large agent-based models by using the faster MaxEnt method
on those components that are known to be amenable to the
methodology.
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In our view, the aggregation problem does not boil down to
simple "averaging" in such a way as to resurrect the Representative
Agent. 1 In order to elaborate on this, we should start from the
following notion: In a (macro) system there can be elementary (micro)
and composite (meso) constituents. Micro constituents are units
which agglomerate into within-homogeneous but between-heteroge-
neous sub-systems (meso constituents). Accordingly, a (macro) system
can be seen as made of (meso) sub-systems composed by (micro)
elementary units, that is a statistical ensemble which represents all the
significant configurations the system can assume. 

At any level of observation, a quantity is a functional, whose
realised values are measurement outcomes. For instance, micro-func-
tions implemented in an ABM are micro-stochastic processes
constituting a statistical ensemble. In a single run of simulations, an
ABM will generate a sample of numbers which is the realisation of the
collection of their outcomes at each point in time: in a sense, an ABM
is a space-time random field.

The numeric outcome of each micro-functional can be thought of
as the outcome of an experiment, hence it is the measurement of a
certain quantity on an observation unit.

A transferable quantity is a variable whose aggregate value is given
by the summation of the constituents’ values. Only transferable quan-
tities admit an exact/algebraic aggregation. Non transferable
quantities are system specific: being realised by the superimposition of

1. The RA is not the average agent, technically it is more properly an estimator for the system
as a collective body characterised either by transferable and not transferable quantities.
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underlying micro-level quantities they are emergent information. For
instance it is not possible to algebraically aggregate individual prices
(they are non transferable quantities): their mean is not the market
price but the average price in the market. The market price pertains to
the market as a collective entity, a system by itself. The inflation rate
does not make sense at the individual level but it depends in some way
on individual behaviours.

It is possible to associate a stochastic process to each kind of quan-
tity in order to have aggregation in terms of expected values. The
expected value of a given observable variable is a functional and does
not coincide with the average. The expected value is the estimator of
the first moment of a stochastic process, the average is a particular
realization of that estimator given a set of experimental outcomes.

From the algebraic point of view aggregation is not a problem if
quantities are transferable. A collection of numbers characterising the
same property of the system’s constituents can always be added up to
generate the aggregate value. This makes the aggregation problem
somehow misleading. Indeed, if a collection of realised numbers {yi,t }
from a transferable quantity is available, then Yt = Σi yi,t solves the
problem. But what if yi,t = f (xi,t )? Is it still true that Yt = f (Xt )? More-
over, what if we know Yt and Xt but cannot observe the micro-data?
Given a set of micro-data from a transferable quantity it will always be
possible to determine an exact system level number by means of alge-
braic aggregation. This is not possible in the other two cases.
Therefore, the problem is inferential as concerning the macro-func-
tional. In terms of micro-foundation things are even more
complicated. The correct question in this case is: given the macro
(Xt ,Yt) what is the micro ({yi,t },{xi,t }) which is consistent with it? The
answer is: the most probable one. Therefore, the expected value func-
tional is needed before an average estimate.

As stated above, the system’s constituents can be thought to agglo-
merate into sub-systems which are within-homogeneous and between-
heterogeneous with respect to some criterion. This aspect leads to a
mean-field approach to aggregation.

 Mean-field can be seen as a method to determine aggregate func-
tionals at sub-system level taking into account the phenomenology of
micro-functionals and of their realisations. If mean-field were made
explicit in terms of expected values, averages would of course be given
at sub-system level, but in no way this implies that these values are
representative of a collective agent in the same way as the representa-
tive agent does. The representative agent is a simplifying assumption
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which allows to manage heterogeneity and interaction for practical
purposes when dealing with problems of aggregation in a micro-
founded context. It is (or behaves) as a collective body on a smaller
scale: in its extreme version, the representative agent is associated with
the system as a whole, annihilating every kind of heterogeneity for
system’s constituents Hartley (1997). The representative agent can be
thought of as the estimator of a (sub-)system, but it still remains a
description of a collective body on a reduced scale level: a per-capita
value is not a property of the individual, it is still a system property.
With per-capita values we are used to compare (sub-)systems not indi-
viduals. The fact that one can think of the average as a numerical
aggregator of micro values can therefore be misleading because it might
be thought that a mean-field approximation of the system is equiva-
lent to the representative agent.

These statements can be made specific by considering the mean-
field approach in the master equation framework for the dynamics of
a probability density for a given observable on a certain state space.
The density P(Nj (t),t) is the probability distribution of micro-
constituents over a state space of sub-systems, which are shaping the
configuration of the macro system. Therefore, in the master equation
framework, the density P(.) is to be conceived as a control-functional.
On the other hand, the mean-field observable Nj (t) plays the role of a
state-functional. 

 In mean-field terms, one can specify a model for Nj (t) which links
its realisations to some other quantities at macro level to take care of
the environment feedbacks, as if they were some force-fields acting on
system constituents and inducing their agglomeration into sub-system
as an externality effect. It is also possible to specify these effects in
terms of effective interactions among sub-systems, which is what Aoki
(Aoki, 1996;  Aoki, 2002; Aoki and Yoshikawa, 2002) calls mean-field
interaction by means of transition rates. Moreover, there can be also
some emerging characteristic which drives the most probable path
trajectory of the state-functional, which is what Aoki calls the macroe-
conomic equation, best know as macroscopic equation and which can
be associated to the notion of pilot-quantity, at least according to the
pilot-wave theory in the Bohminan interpretation of quantum mecha-
nics (see Bohm, 1952a; Bohm, 1952b). 

Among the methodologies to solve master equations (see Kubo
et al., 1973; Gardiner, 1985; Risken, 1989; van Kampen, 1992; Aoki,
1996; Aoki, 2002; Aoki and Yoshikawa, 2002) when the state-func-
tional is known to be distributed as unimodal and peaked about its
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expected value, Nj (t) can be expressed by means of the van Kampen
ansatz: . In this representation, the macro-
scopic equation drives the expected value of the share of agents
occupying the j-th state and is itself a function of transition rates,

, each of which—in Aoki’s interpretation—includes
the effect of the environment on Nj (t) by means of the so called exter-
nality functions depending on system quantities. Therefore,
being a fully functional development of the system, and allowing for
heterogeneity and interaction, the mean-field/master equation
approach cannot be confused with a representative agent, unless the
representative agent were specified as an estimator for the system as a
collection of collective bodies (sub-systems) each of which takes a
place on the state space and obeying an exclusion-like principle,
which is not a very reliable assumption. Differently said, two sub-
systems in the same state are almost the same sub-system and they can
be lumped into a larger body because their elementary constituents
belong to the same micro-state.

Finally there is one more technical aspect which needs to be dealt
with: a master equation, in general, does not admit a closed form solu-
tion but requires an approximation method to be solved. Basically
there are three methods of approximation, each of which has been
described by Aoki (Aoki, 1996): Kubo method (Kubo et al., 1973),
Kramers-Moyal expansion (see Gardiner, 1985; Risken, 1989) and van
Kampen system size expansion (see van Kampen, 1992). A fourth
method is also available, it is the one developed in our paper and it can
be called Aoki method: in essence it is a variant of van Kampen’s, even
though more natural and easy to deal with. All these methods share a
common feature: they are grounded on approximation techniques. In
the van Kampen/Aoki perspective, by using the ansatz

 into an explicit definition of transition rates,
the master equation for P(Nj (t), t) is transformed into a master equa-
tion with respect to the spreading fluctuations term ε(t), that is
concerning the density Q(ε(t),t). This new master equation is perfectly
equivalent to the original one and its approximation is as follows:
transition rates are Taylor approximated about the drift φ(t), the
density Q(ε(t),t) is Taylor approximated about the spread ε(t). Due to
the transformation and a time rescaling, a
system size parameter N enters the new master equation and its
approximation. Hence, by applying the polynomial identity principle,
two differential equations can be asymptotically isolated: the first one
for the dynamics of the most probable drifting path trajectory, φ(t),

 ( ) = ( ) ( )jN t N t N tφ ε+

 ( ) = ( ( ), ( ))t t tφ φ β δ

( )j tψ

( ) = ( ) ( )jN t N t N tφ ε+

( ( ), ) ( ( ), )jP N t t Q t tε≡
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and the second one for the dynamics of the probability density of
spreading fluctuations . The first one is the macroscopic
equation, and it depends on transition rates, even though it reads as
an ordinary differential equation. The second one asymptotically
converges to a Fokker-Planck equation as the system size increases.
The macroscopic equation can be solved separately from the Fokker-
Planck, its solution can therefore be used to solve the latter. Very
often, the Fokker-Planck can be analytically solved with standard
methods but, if the transition rates are too complicated, the solution
can also be found systematically, in van Kampen’s terminology.
Indeed, by setting the stationarity condition , the
Fokker-Planck equation boils down to a continuity equation obeying
Liouville theorem, and it reads as an Hamilton-Jacobi equation. Since
it asymptotically concerns a second order approximation, the
stationary distribution is found to belong to the family of exponential
distributions of Gaussian type. Therefore, what one really needs is a set
of coupled equations (called the mean-field system) for the first and
the second moments to get the dynamic functionals for the expected
value and the variance driving the density Q(ε(t),t) through time. 

 Two remarks are in order at this point. First, the differential equa-
tions for the expected value and variance functionals of the spreading
fluctuations distribution about the drift depend on the transition rates
and the macroscopic equation (here it comes its pilot role), and this
shows that fluctuations about the drifting path trajectory have an
endogenous specification in terms of mean-field or effective interaction.
Secondly, what has been found to be Gaussian is not the solution of
the master equation itself, but the distribution of fluctuations: van
Kampen/Aoki methods do not provide a properly said Gaussian
approximation to the model. 

 This method is not less valid than the Kramers-Moyal or Kubo
methods just because of approximation. Indeed it does not properly
allow for Gaussian approximation of the master equation, while Kubo
method guesses a-priori an exponential probability kernel of Gaussian
type and, if the Pawula’s theorem (see Risken, 1989) conditions for the
second order approximation are not fulfilled, Kramers-Moyal method
is by definition approximate without any asymptotic behaviour.
Moreover, as it can be done either with Kubo and Kramers-Moyal
methods, the van Kampen/Aoki method can deal with higher order
moments, which usually characterise asymmetric distributions. The
weakness of van Kampen/Aoki methods is that they provide a local
approximation about the drift for the state-functional Nj (t), while

( ( ), )tQ t tε∂

( ( ), ) = 0tQ t tε∂
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Kramers-Moyal and Kubo methods provide a global approximation for
the probability density P(Nj (t), t) control-functional. In our model this
is almost irrelevant because the markovian nature of the model allows
quite naturally for a second order approximation, and because the
state space is trivial being made of two states only. Therefore, the state
functional N1 (t) is necessarily unimodal, and this allows for the shown
ansatz. In general, with more complex state spaces, non-unimodal
distributions and asymmetries, Kramers-Moyal method gives better
results provided some reasonable order of approximation.

In our opinion, Aoki’s interpretation of the Master Equation
Approach (MEA) combined with Mean-Field Approximation (MFA)
leads to three main theoretical results with promising applications to
socioeconomic disciplines, mainly developed in macroeconomics:

1.  stochastic aggregation of complex systems made of interacting
and heterogeneous constituents;

2.  inferential identification of drift and spread stochastic functionals
as dynamic components of time series at the system’s level;

3.  endogenous modelling of interaction and spreading fluctuations
about cyclical drift as the macroscopic emergent phenomenon
due to the superimposition of microscopic behaviours. 

Of course the MEA-MFA does not solve all the methodological and
technical problems of macroeconomic modelling but it makes some
steps beyond theoretical and practical problems the standard model is
facing in micro-foundation of macro-models and aggregation of
micro-behaviours. One of the most intriguing suggestions that have
emerged from the issues dealt with in the paper and its discussion is to
take in account local and global interaction by means of a nested
structure consisting of groups made of sub-groups which can be parti-
tioned into even smaller agglomerations over a finite hierarchical
structure of concentric levels. In principle it might be possible to specify
several master equations one nested into the others from the higher to
the lower level of description. Each equation should be used to distin-
guish different interactive environments, from the very global to the
most local one. The deeper one goes through this structure the more
the interactions become less global, or more local, and the nested
combination should take care of field-effects exerted by the level
above or outside on the level below or inside. It is our opinion that this
structure could be promising for two related purposes: it can describe
transitions between different areas of a state space by considering
dynamic transitions though partitions within each areas, and it can be
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a starting point to develop a phase-transition and self-organised-criti-
cality analysis for complex socioeconomic systems.

References 

Aoki M., 1996. New Approaches to Macroeconomic Modelling, Cambridge
University Press.

Aoki M., 2002. Modeling Aggregate Behaviour and Fluctuations in Economics,
Cambridge University Press.

Aoki M., and H. Yoshikawa, 2002. Reconstructing Macroeconomics,
Cambridge University Press.

Bohm D., 1952a. "A suggested Interpretation of the Quantum Theory in
Terms of Hidden Variables I." Physical Review, 85: 166-179.

Bohm D., 1952b. "A suggested Interpretation of the Quantum Theory in
Terms of Hidden Variables II." Physical Review, 85: 180-193.

Gardiner  C. W., 1985. Handbook of Stochastic Methods, Springer-Verlag.

Hartley E.J., 1997. The Representative Agent in Macroeconomics, Routledge.

van Kampen N. G., 1992. Stochastic Processes in Physics and Chemistry,
North-Holland.

Kubo R., K. Matsuo and  K. Kitahara, 1973. "Fluctuations and relaxation in
macrovariables." Journal of Statistical Physics 9: 51-93.

Risken H., 1989. Fokker-Planck Equation. Method of Solutions and Applica-
tions, Springer-Verlag. 




