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Empirical evidence shows that a financial distress, faced by a bank or the whole
economy, might cause large-scale withdrawals of deposits even when bank deposits
are protected by deposit insurance, implicitly or explicitly guaranteed by a
government. Building on Kiema and Jokivuolle (2015), we present a new model of
such partial bank runs. In our model withdrawals are caused by the fear that both
the bank and the government's deposit guarantee might fail in the future. Our focus
is on a guarantee rather than on insurance, since the assets of deposit insurance
funds might not be sufficient in large-scale systemic crises. Guarantee failure is
possible because, being sovereign, the government may choose not to keep its
promises. This option causes a fixed welfare cost (e.g. a reputational cost), which in
a sufficiently severe crisis may be smaller than the costs from deposit guarantee
payments. We also assume that, being welfare-maximizing, the government
recapitalizes the bank during the early stage of the bank run. When decisions
concerning deposit guarantee payments are made, recapitalization costs are
already sunk costs, but the partial bank run has reduced the coverage costs that the
remaining deposits might cause for the government. In this way, the depositors
who withdraw funds during a partial bank run decrease the danger of a deposit
guarantee failure and increase the incentives of the remaining depositors to keep
their deposits in the bank. We apply our framework to the European Deposit
Insurance Scheme (EDIS), and we view the reliability of the Single Resolution Fund
and its backstop as the counterpart to the reliability of the government's promises.
It turns out that in an asymmetric shock that affects only a single eurozone country,
the EDIS improves bank stability, but its effects might be ambiguous in a systemic
crisis that affects the whole Banking Union.
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Empirical evidence suggests that even if bank deposits are
protected by a deposit insurance, implicitly or explicitly guaranteed by
a government, a distress that the bank or the government faces might
induce depositors to make large-scale withdrawals of deposits as in a
bank run. An example of such behavior was seen in Greece during the
period from 2009 to June 2012, as the aggregate amount of Greek
bank deposits decreased from €245bn to less than €174bn (Spiegel,
2014). It is estimated that only one-third of the funds were withdrawn
because of decreasing living standards, and that two-thirds either left
the country or were stored within Greece outside the Greek banking
system (ibid).1 

The Greek “bank jog”, i.e., the withdrawing of deposits only gradu-
ally, and only a part of them, would not have made much sense if
depositors during the years 2009-2012 had either no trust at all or
perfect trust in the deposit guarantee. This is because in the former
case it would have been rational to withdraw all deposits immediately,
whereas in the latter case there would have been no reason for with-
drawing any deposits. These two polar opposite cases are described by
the classical bank run model of Diamond and Dybvig (1983), which is a
model with three periods (the period T=0 at which the bank makes an
investment; the period T=1 at which a bank run might emerge; and the
period T=2, at which the return from the investment becomes avail-
able). The model has two equilibria: in the bank run equilibrium it is
rational for all depositors to withdraw their deposits from the bank at
T=1, because all the other depositors do so, while in the other equilib-
rium (the one without a bank run) there are a sufficient number of
depositors (the patient depositors) for whom it is optimal to withdraw
their deposits only at T=2. 

A famous criticism by Goldstein and Pauzner (2005, p. 1294) points
to a certain incoherence in the Diamond-Dybvig model: despite the
existence of the bank run equilibrium, in the Diamond-Dybvig model
the mutual bank solves the problem of selecting the optimal deposit
contract assuming that a bank run will not occur. However, the model

1. Cf. also Brown et al. (2016), who have studied bank run-like withdrawals of deposits in
Switzerland during the crisis years 2008-2009. They compare the distress which various Swiss banks
were facing with the tendency of the depositors of each bank to withdraw their deposits. According
to ibid. (pp. 2-3), bank accounts in a highly distressed bank (UBS) were 23 percentage points more
prone to experience an outflow of funds than accounts in a non-distressed bank. Cf. discussion
below.
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does not as such answer the question which equilibrium will be realized
(or even yield probabilities for the two equilibria).

Goldstein and Pauzner (2005) introduce a global games framework,
in which each depositor receives at T=1 an inaccurate signal and uses it
for deducing a probability distribution for the correct signal, and
further, for the revenue from the bank’s investment at T=2.2 The equi-
librium of this setting turns out to be unique. A unique equilibrium has
been proved to emerge also when the depositors coordinate their
behavior in an exogenously given manner,3 and when the demand
deposit contract is suitably modified.4

 The subsequent literature has also identified a variety of explana-
tions for the partial nature of many observed bank runs. For example,
Azrieli and Peck (2012) show that a bank run might remain partial
when there is more variety in consumer preferences than postulated by
Diamond and Dybvig (1983). Ennis and Keister (2010) consider a setup
in which depositors withdraw their deposits sequentially and the
government can respond to an emerging bank run by changing its
policies in order to stop the run. 

Most of the literature has so far focused on bank runs that occur in
the absence of a deposit guarantee, or when the deposit guarantee is
only partial (cf. Chen and Hasan, 2006, and Silva, 2008), i.e. guaran-
tees a sum that is smaller than the principal of the deposits. The paper
which, perhaps, is closest to our approach within the earlier literature is
Allen et al. (2018), which studies the effects of a partial government
guarantee with a global games framework. The guarantee extends in
ibid. to both period T=1 and T=2, just like in our model (and unlike
most of the earlier literature). 

2. Cf. also e.g. Takeda (2001), who applies a global games model to international capital flows,
Moreno and Takalo (2012), who interpret the dispersion in the signals of the global games
framework as a measure of bank transparency, and Silva (2008), who analyzes the effects of the
design of partial deposit guarantee schemes on bank run probabilities utilizing a global games
framework.
3. The equilibrium becomes unique when one postulates that the depositors coordinate their
behaviour (in accordance with some exogenously given rule) on the basis of a sunspot signal (see e.g.
in Peck-Shell, 2003). Cf. also Engineer et al. (2013, p. 534) and Dermine (2015). Dermine (2015)
considers a Diamond-Dybvig style setting and postulates that the bank has also capital and not just
deposits, and that a bank run emerges only when the bank´s loan losses are (according to the
information that becomes known in the interim period) excessively large, given the bank´s amount of
capital.
4. Cf. Allen-Gale (1998). Allen and Gale point out that a unique equilibrium can be found in a
Diamond-Dybvig style model with a shared signal if the bank’s investment cannot be liquidated and
if the bank is allowed to make the contract conditional on the return, which in their model becomes
known already at T=1, that the bank obtains at T=2.
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However, as e.g. the bank runs in Greece in 2009-2012 suggest, not
just a bank run or a government guarantee, but also depositors’ trust in
a deposit insurance or guarantee can be partial. The above-mentioned
models do not analyze the partiality of trust. In what follows we shall
put forward a model in which partial trust is represented by a govern-
ment deposit guarantee that might, due to the government’s decision
not to honor its promises, fail under sufficiently extreme conditions. In
our framework, the possibility of a deposit guarantee failure emerges
naturally as a result of the choices made by a welfare-maximizing
government. This possibility might motivate depositors to withdraw
their deposits after a negative signal, but it turns out that such bank
runs are always partial, and the model provides a natural explanation
for their partiality.5 

From the point of view of economic theory, the main contribution
of this paper consists in our uniqueness results: we prove that our
model has a unique equilibrium and that also the size of the partial
bank run is unique in this equilibrium, although we do not make use of
the rather complicated global games framework (cf. Goldstein and
Pauzner, 2005). On the other hand, our representation of partial trust
forces us to introduce into our model some complications that are not
present in most other bank run models. For example, our uniqueness
result (see Theorem 3 below) would not be valid if we assumed that the
investment would always produce one of just two different revenues, as
in the Goldstein Pauzner framework, or that a signal would uniquely
determine in advance the revenue from the investment, as in Allen-Gale
(1998, p. 1253). It is essential for our purposes that the possible reve-
nues form a continuum and that an advance signal can only provide a
probability distribution for the revenue values within the continuum.

 The analysis of the depositors’ trust in a deposit guarantee system
has become increasingly important with the development of the Euro-
pean Monetary Union. The roadmap that the European Commission
presented on 6 December 2017 for deepening Europe’s Economic and

5. The welfare function that the government of our model is maximizing has an affinity with the
representations of welfare in Hasman et al. (2011), Keister (2016), and Allen et al. (2018). In the
models of Hasman et al. (2011) and Keister (2016), the government chooses whether to bail out
banks when some depositors are in the absence of the bailout unable to withdraw their deposits.
While making its decision, the government takes into account both the utility that the withdrawn
deposits bring to the depositors and the depositors’ utility from a public good, whose available
amount is diminished by the bailout. However, we do not explicitly introduce a public good in our
model. Rather, we consider a government with deep pockets and assume that deposit guarantee
payments decrease welfare without explicitly considering the alternative uses of the funds that are
used for such payments. See footnote 9 for some further discussion.
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Monetary Union suggested that the European Deposit Insurance
Scheme (EDIS) should have been implemented already by the end of
2018 (European Commission, 2017a, p. 15), and in December 2018
the Eurogroup decided to set up a high-level working group to work on
the next steps of its implementation (European Council, 2018). 

Since it is unlikely that the assets of a deposit insurance fund
(whether national or union-wide) would suffice for reimbursing all
insured depositors in a severe, large-scale bank crisis, the availability of
other sources of funding is quite essential for the credibility of deposit
insurance. In the case of the EDIS, such extra funding would be
provided by the Single Resolution Fund and its backstop. According to
the proposal of the European Commission (2017b, p. 6), the backstop
will be provided by the future European Monetary Fund. As the
Commission points out, the backstop “will instill confidence in the
banking system by underpinning the credibility of actions taken by the
Single Resolution Board” (ibid.). 

Clearly, a theoretical analysis of the confidence and the credibility
that the Commission wishes to strengthen would be helpful for discus-
sions of these new tools. Wishing to focus on cases in which the assets
of deposit insurance funds are insufficient, we present a model with a
government deposit guarantee rather than an insurance. This simplifi-
cation leaves several important questions raised by the EDIS for further
work. As e.g. Bénassy-Quéré et al. (2018) point out, the EDIS leads to
new kinds of moral hazard problems: the introduction of the EDIS
might increase the incentives of a government to force or nudge
domestic banks to buy sovereign bonds, if the costs of debt restruc-
turing to the depositors were under the EDIS paid by EU institutions
rather than by a national deposit insurance scheme. Such problems
could be analysed in a generalized version of our setting.

1. Model

There are three periods (T=0, T=1, and T=2), and consumers who
aim at maximizing their expected utility, a single bank that accepts
consumer deposits, and a government. (Like most other bank run
models, our model abstracts from the central bank’s actions as the
lender of last resort.) There is a riskless liquid asset, which may be used
for consumption at any time, and which we picture as cash money for
the sake of concreteness. The consumers deposit their liquid assets in
the bank at T=0, and they may withdraw their deposits at T=1 or T=2.
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Just like in the global games framework, there is a signal η that is
observed at T=1, and which provides the actors with information about
the state of the economy at T=2. It is quite essential in a global games
model that the possible signals form a continuum, since in it the signal
of each depositor is an inaccurate estimate of a more accurate (but
unknown) average signal. However, we do not need to postulate an
infinite number of different signals. To keep things as simple as
possible, we shall below assume that there are just two possible signals
η = G and η = B (G for “Good” and B for “Bad”). Intuitively, the good
signal G corresponds to a normal state of affairs, in which depositors
believe that bank deposits may be withdrawn at will, whereas after the
bad signal B they might lose their trust both in their bank and in
government institutions.

In our model the bank is owned by a banker who aims at maxi-
mizing his profit.6 The government aims at maximizing expected
welfare. It makes a promise of a deposit guarantee but, being sover-
eign, it can choose whether to respect its promise or not. 

As Figure 1 illustrates, in the presence of three types of actors there
are many more choices to be made than in a model in which only the
depositors are free to choose between different courses of action. A
general analysis of a sequential game that contains all the steps shown
in the Figure below would be quite complicated, but fortunately, it is
unnecessary for our current purposes. 

The point of our analysis is to study the case in which η = B, i.e. the
case in which the bad signal is observed, and our focus will be on the
choices that are made after its occurrence. We think of the bad signal
as an adverse, unexpected event, and our approach will be to first solve
the model, assuming that the signal is always good, i.e. that η = G with
probability 1. Keeping the choices made before the signal unchanged,
we then consider the choices that are made after it.

This procedure has two interpretations. We may think of it as corre-
sponding to a restricted rationality assumption which states that the
depositors and the bank behave at T=0 just as if the signal were known to
be good for sure. The emergence of the bad signal is under this interpreta-
tion an unexpected shock that makes the agents change their strategies. 

6. Our reasons for introducing a banker into our model, instead of considering the simpler mutual
bank of the Diamond-Dybvig model and most of the literature building on it, will soon become
obvious: we wish to consider bank failures at the last period, T=2, and such failures could not occur in
a Diamond-Dybvig style model in which the mutual bank simply divides its wealth between the
depositors at T=2.
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The other interpretation is based on the fact that—as we shall shortly
see—the equilibrium choices at T=0 that we present are corner solutions.
Even when the possibility of a bad signal is taken into account, they will
remain the optimal choice if the bad signal (relative to which they are
suboptimal) is sufficiently unlikely. Hence, the solution that we present
must correspond to a Nash equilibrium of the whole game depicted in
the Figure below, also without assuming restricted rationality, if the
probability of the bad signal η = B  is sufficiently low.

  

1.1. The timeline

The consumers form a continuum, whose size we normalize to
1 + μ, and which consists of μ impatient consumers and 1 patient
consumers. Each consumer is allocated one unit of the riskless, liquid
asset in the beginning of period T=0. 

Impatient consumers obtain utility only from consumption at T=1,
while patient consumers obtain utility from consumption both at T=1
and at T=2. The utility of both patient and impatient consumers is
represented by the utility function u, which by assumption satisfies the
familiar conditions 

u(0) = 0, u’(c) > 0, u’’(c) < 0 (1)

and which, by normalization, is also assumed to satisfy the condition7 

u’(0) < 1 (2)

7. The motive for introducing the assumption (2) will be made clear in Section 1.4. There it will be
seen that the assumption (2) restricts the weight that the government gives to consumer utility in its
welfare function ((26) below). 
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Denoting the consumption in periods T=1 and T=2 by u(c1) and
u(c2), respectively, the utility of a patient consumer is given by u(c1+ c2)
and the utility of an impatient consumer is given by u(c1). The charac-
teristics of being patient or impatient are unobservable to others, and
not yet known at T=0. 

The banker has profitable investment opportunities that are not
available to the consumers directly. Motivated by these opportunities,
the bank presents the depositors with a demand deposit contract that
allows them to withdraw R1 at T=1 or postpone withdrawal until T=2.
The government promotes bank stability with a deposit guarantee that
applies to the deposits withdrawn in each period. The deposit guar-
antee is a promise that the government provides the depositors with
the principal of their deposit (i.e., one unit of liquid assets), should the
bank fail to do so. We shall discuss the functioning of this guarantee in
Sections 1.2 and 1.4 below. 

The consumers may choose between depositing and storing their
wealth in the form of liquid assets. When the depositors are willing to
deposit, the banker may choose any number of depositors between
zero and the total number of consumers, 1 + μ. We denote the number
of depositors by D. Since the qualities of being patient or impatient are
not known, the number of the impatient depositors is 

(3)

and the number of patient depositors is 

(4)

Having received deposits, the banker uses the sum I0 (where 0 ≤ I0 ≤ D)
for an investment. 

At the beginning of period T=1 the signal η (where η = G, B)
becomes known, and the consumers learn their types (patient or impa-
tient). The banker then specifies the interest factor R2 that applies to
the deposits which are withdrawn only at T=2.8 Knowing the signal,
their own types and the deposit interest factors, the depositors choose

8. Observe that under these assumptions the banker cannot make at T=1 a binding commitment
(R1, R2 (η )) which would specify also the payoff at T=2, R2, and make it depend on the signal. The
exclusion of this possibility is motivated not just by realism (i.e., the fact that actual demand deposit
contracts do not make interest rates contingent on receiving negative economic signals) but also by
our interpretation of the signal η = B. Its real-world counterparts are not meant to be well-defined
economic indicator values that one could make contracts contingent upon, but various kinds of
negative developments that cannot be characterized precisely in advance.

1IMPD Dμ
μ

=
+

1
1PATD D

μ
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whether to withdraw. We refer to the decision not to withdraw as
staying for short. 

It is obvious that all the impatient depositors always choose to with-
draw. We denote the share of the staying and of the withdrawing
depositors among all patient depositors by χ and λ, respectively.
Clearly, 

λ + χ = 1 (5)

We could choose either λ or χ to be the variable that represents the
choice made by the depositors. It has turned out that using χ leads to
less clumsy notation. While λ would be a measure of the size of the
bank run, χ can be thought of as a measure of the stability of the
banking system, and we refer to it as bank stability for short. Clearly,
the value χ = 0 corresponds to the full-scale bank run of most bank run
models, while the maximum value χ = 1 corresponds to a no-bank-run
equilibrium, in which all patient depositors stay.   

If the withdrawal at T=1 exceeds the liquid assets of the bank, the
bank can get funding through government recapitalization. By recapi-
talization we mean a procedure in which the government provides the
bank with the extra liquid assets that it needs for the withdrawn
deposits and in exchange receives the ownership of some share sG of
the bank.9 This ownership gives the government the right to receive
the part sG of the payoff of the bank at T=2.

If government recapitalization were the only source of funding for
the banker in case of a liquidity shortage, our model would not yield
a well-defined equilibrium value for sG. However, we postulate that
the banker has also the possibility to disinvest. More specifically, if the
banker makes at T=0 the investment I0 and liquidates the part
ΔI (0 ≤ ΔI ≤ I0) of it at T=1, the liquidation immediately produces
γ (ΔI), where γ < 1. Disinvestment reduces welfare, and the
government prefers recapitalizing the bank to letting the banker disin-
vest. The outside option of disinvestment affects the equilibrium of the

9. We are assuming that the government is always able to provide the needed recapitalization. Our
model does not explicitly discuss sovereign debt or taxation as sources of government funding.
However, to motivate the government’s ability to recapitalize, we observe that recapitalization might
be a problem mainly when the bad signal relates to the whole financial sector of the deposit
guarantee area, rather than just to a single bank. In this case the bank of our model should be viewed
as a representative, average bank, and low values of the revenue ρ from the bank’s investment
should be viewed as counterparts of a systemic bank crisis (cf. discussion in Section 4 below). In our
model the “bad” signal η = B at T=1 is a signal which indicates that low revenue value ρ are possible,
rather than a signal stating that a low value of ρ has been realized. Hence, it is not implausible to think
that recapitalization could be funded by sovereign debt at T=1. 
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model via the value of sG , which is determined by the condition that
the banker would choose to disinvest if recapitalization reduced his
profits more than disinvesting. This is discussed in more detail in
Section 1.2. 

If the investment which remains at T=2 is I, it produces ρ I where ρ
is a random variable. The probability distribution of ρ is influenced by
the signal η. We assume that after each signal η (η = G or η = B) the
distribution of ρ is characterized by the density function hη (ρ). For the
purposes of comparative statics, it is practical to assume that hB (ρ) is
positive in some interval (0, ρB,max) with ρB,max > 1. This assumption
implies that, after the “bad” signal, arbitrarily small returns for the
investment occur with a positive probability. On the other hand, to
keep things simple, we shall assume that after the “good” signal the
investments are, at least to some extent, profitable in the sense that 

 hG (ρ) = 0 when ρ < 1 + ε  for some positive ε (6)

i.e., when the investment I produces after the “good” signal at least
slightly more than the value of the invested liquid assets.  

In the (non-equilibrium) case of disinvestment, the assets of the
bank will at T=2 consist of the return γ I from the remaining invest-
ment. The bank could also have liquid assets10 that remain after the
investment of T=0 and the withdrawals of T=1. The liabilities of the
bank consist of χ deposits of value R2. If the assets suffice for the with-
drawals, the depositors receive their deposits and the bank’s owners
(the banker, the government, or both) get the difference between its
assets and liabilities. When the assets are insufficient, the bank fails. In
this case the bank is taken over by the government. As we have seen,
the government has given a deposit guarantee, which obliges the
government to provide each of the staying depositors with the prin-
cipal (i.e., 1) of her deposit. As the last move of the game (which occurs
only in case of bank failure), the government chooses whether to
honor its promise. We postpone the more detailed discussion of bank
failure, and the welfare function that the government maximizes while
making its choice, to Section 1.4 below. 

10. We shall shortly see that at T=2 there are, as a matter of fact, no such remaining liquid assets in
the equilibria of the model.
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1.2. Recapitalization and the bank’s final payoff

We now turn to a more detailed discussion of period T=1. As we
have seen, all the DIMP impatient depositors will withdraw at T=1, and
in our notation the number of withdrawing and staying patient deposi-
tors are denoted by λDPAT  and by χDPAT, respectively. Remembering
(3), (4), and (5), we see that the withdrawals amount to

(7)

We denote the difference between the liquid assets of the bank (in
the absence of a disinvestment) and the withdrawals by L, so that 

(8)

Simple algebra shows that the liquid assets of the bank suffice for
the withdrawals (i.e. that L ≥ 0) even without any disinvestment if the
bank χ stability satisfies χ ≥ χ, where

(9)

By definition, the bank’s net worth at T=2 is the difference between
its assets and liabilities, and as we have seen, the bank fails when this
difference is negative. The bank’s final payoff is equal with the net
worth when the bank does not fail, and zero when it does. We denote
the bank’s final payoff by πBANK and the banker’s profit by πBANKER. These
are identical when the bank’s liquid assets suffice for the withdrawals at
T=1, and we may now conclude that they are in this case given by

  (χ ≥ χ) (10)

When χ < χ, the liquid assets of the bank are insufficient for the
withdrawals. In this case there are two strategies to be considered,
disinvestment and recapitalization. In a disinvestment, a part ΔI of the
bank’s investment changed into γ (ΔI) (where γ < 1) in liquid assets.
We assume that the government prefers recapitalization to disinvest-
ment independently of which one of the signals η = B, G is realized,
and independently of the size of the bank run.11 

11. Cf. footnote 9 above.
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We also assume that, in case of recapitalization, the government
prefers larger values of its share sG as an owner of the bank to smaller
ones. The latter assumption means, simply, that the government
prefers obtaining the bank’s payoff to giving it to the banker. Also the
intuition behind the former assumption is easy to see. Disinvestment
reduces the profits when ρ is sufficiently large to prevent the bank from
failing, and when ρ is smaller and the bank fails, a smaller revenue from
the remaining investment might correspond to larger deposit guar-
antee payments by the government at T=2. Hence, assuming that γ is
sufficiently small, it makes sense for the government to recapitalize the
bank instead of letting the banker destroy a part or the whole of the
investment. 

When extra liquidity is needed, the value of L (defined by (8)) is
negative, and the necessary extra liquidity amounts to L . As our next
step, we shall explain how the outside option of disinvesting deter-
mines the share sG of the bank that the government can demand for
itself in exchange for providing L. In general, a disinvestment of size
ΔI reduces the remaining investment to I = I0 – ΔI and produces γ (ΔI)
in liquid assets at T=0. Using the disinvestment strategy, the liquid
assets that are available at T=1 consist of the liquid assets D – I0 that
remain after T=0 plus the liquid assets γ (ΔI) from the disinvestment.
These assets equal the withdrawals only after the whole investment has
been disinvested (i.e. when ΔI = I0 and I = 0) if χ equals 

(11)

If χ ≤ χ, the disinvestment strategy would lead to the elimination of the
whole investment, and if χ < χ, it would cause bank failure already at
T=1. Between the two extremes χ = χ (for which no disinvestment is
needed and the remaining investment is I = I0) and χ = χ, the invest-
ment that remains under the disinvestment strategy is a linear function
of χ. Hence, we may express the investment that still remains at T=2
under the disinvestment strategy as 

(12)

After disinvestment, the assets of the bank would at T=2 amount to
ρIDIS (χ) and the liabilities would amount to R2 for each of the χ DPAT

remaining deposits. Remembering (4), it is seen that the final payoff
from the bank would be 

     (χ ≥ χ) (13)
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This final payoff would at the same time express the profit of the
banker.

The disinvestment strategy affects the equilibrium of the model, in
which extra liquidity is provided by recapitalization, via the result (13).
Under the recapitalization strategy, in which the government provides
the missing liquidity and demands in exchange the ownership of the
share sG of bank, the final payoff from the bank is

        (14)

The share sG of this payoff goes to the government and the share 1 – sG

to the banker. Hence, in this case the banker’s profit is

                                (15)

while the final payoff that the government receives from the bank is

                                          (16)

The banker will not accept recapitalization if the expected profit
from it is smaller than the expected profit from disinvestment. Intro-
ducing the notation

                             (17)

for the expectation value of any function of G(ρ) of ρ, assuming that
the signal is η (where either η = B or η = G), we may formulate the
condition that determines the government ownership sG as

                  (18)

We conclude from (12) and (13) that the result (18) is formally valid
also when χ < χ (i.e., in which the disinvestment strategy leads to the
elimination of the whole investment and bank failure already at T=1)
since in this case disinvestment corresponds to zero profit, implying
that the government can demand the whole bank for itself and that
sG = 1. Our analysis of the banker’s strategy is based on the result,
which is implied by (15) and (18), that

(19)

so that the banker’s expected profit-maximizing choices are identical
with the ones that correspond to the disinvestment strategy (despite
the fact that the recapitalization strategy is always chosen).
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1.3. The signal G and some simplifications

 We shall now consider the case in which the signal η turns out to
be G. According to (6), this implies that at T=2 the investment
produces at least slightly more than the value of the invested assets.
Our analysis of this case justifies a number of simplifications to our
model. 

Although we have already explained why we may leave the banker’s
choice between disinvestment and recapitalization out of the game
that we consider (and assume that recapitalization is always chosen), a
bewildering number of choices still seem to exist in the model. At T=0
the banker chooses R1; the depositors choose whether to deposit; if
they do, the banker chooses the amount of deposits D and the size of
the investment I0; after the signal η the banker chooses the interest
factor R2; the depositors choose whether to stay or withdraw; and at
T=2, in case of bank failure, the government chooses whether to
provide the promised deposit guarantee. 

However, our approach is to solve the equilibrium values R1, D, I0,
R2 and χ assuming that the good signal η = G is observed, to assume
that the choices R1, D, and I0 (which are made before observing the
signal) correspond to the good signal, and to investigate the game that
takes place after the signal when the signal is η = B. When the case
with the “good” signal is investigated, it is not necessary to consider
the choice of the government at T=2, because this choice (i.e., whether
to provide deposit guarantee payments) is made only in case of bank
failure, and it turns out that after η = G the bank never fails in equilib-
rium. As we stated above, under its obvious interpretation our model
describes a case in which the signal η = B is a shock that the actors
have not considered while choosing their strategies at T=0, but the
same equilibrium emerges also when the probability of the signal η = B
is sufficiently small, given the information of period T=0.

As our first step, we observe that a choice R2 < R1 would lead to a
full-scale bank run, since for a patient consumer the utility of with-
drawing is always u(R1), but the utility from staying is maximally (u)R2.
Accordingly, from now on we shall assume that R2 ≥ R1. Similarly, if it
were the case R1 < 1 and that the bank obtained a positive number of
depositors, the utility for them of withdrawing would be less than u(1),
the utility of not depositing. On the other hand, the utility of staying
would be u(R2) > u(R1) for any value of R2 that is slightly larger than R1,
implying that the bank could make all the patient depositors stay by
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offering an interest rate R2 < 1. Understanding this, the depositors
would not deposit if R1 < 1. 

From now on, we shall restrict attention to the non-trivial case in
which R2 ≥ R1 ≥ 1. The part (a) of the following result gives an explicit
formula for the profit of the banker that applies to interest factors
which are in the non-trivial range and which are “sufficiently small”.
Part (b) states that there is no point for the banker to raise interest
factors above the “sufficiently small” ones. The interest factor RM sets a
limit for being “sufficiently small” and it is given by 

(20)

where ε is the value which appears in (6). The investment I*0 which
appears in the following result is, intuitively, “of the right size” in the
sense that the bank does not have to disinvest if there is no bank run,
but it also has no extra liquidity after the patient depositors’ with-
drawals. 

Remark 1.12 Consider some strategy of the banker in which the
banker chooses R1 = R1 and, if the signal turns out to be good, chooses
R2 = R2 where RM > R2 > R1 > 1. 

(a) The choices D* of D and I*0 of I0 which maximize the expected
profit of the banker after the good signal are D* = 1 + μ (i.e., the
maximal investment) and 

I*0 = (1 + μ) – μR1

For these choices all patient depositors choose to stay after the
good signal, and the profit of the banker is

π*η = G (R1,R2) = ρ I*0 – R2

(b)Consider now choosing R1 and, if the signal turns out to be
good, R2, where R2 > R2  and R1 > 1. With these choices the
banker’s expected profit after the good signal is smaller than   

 where  

Together with our earlier discussion, Remark 1 shows that the equi-
librium choices R1 and R2 must satisfy 1 ≤ R1 ≤ R2 < RM. Letting R1 be
some fixed value that satisfies 1 ≤ R1 < RM, we observe that a choice
R2 > R1 cannot be the banker’s equilibrium choice after the good

12. An appendix containing the proofs of the Remarks and Theorems is available upon request from
Ilkka Kiema (ilkka.kiema@labour.fi) 
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signal, since in this case a slight decrease in R2 would according to
Remark 1 increase the banker’s expected profit. It follows that the only
Nash equilibrium is the limiting case in which R2 = R1, it is immaterial
to the patient depositors whether to stay or withdraw (since they know
that the bank never fails and their utility is in both cases u(R1)), and
they all choose to stay so that  χ = 1.

We now consider the banker’s choice of R1 at T=0. Since in equilib-
rium R2 = R1, we observe that 

Now the choice R1 > 1 cannot maximize expected profit, since
EρG (π*

BANKER)  is decreasing in R1. Hence, the only Nash equilibrium is
the limiting case in which R1 = 1, it is immaterial for the consumers
whether to deposit since this yields the same utility as holding liquid
assets would yield, and the number D = D* = 1 + μ of consumers, as
desired by the banker, choose to deposit. 

Consider now the case in which the signal unexpectedly turns out
to be the “bad” signal η = B. Except for the result concerning the
interest factor R2, which is chosen only after the signal has been
observed, the above results remain valid also in this case. Remem-
bering (3) and (4), the simplifications that apply also to this case can
now be summarized as follows:

(21)

We also observe that the value of L defined by (8) (which expresses
the difference between the liquidity that the bank needs at T=1 and its
actual liquidity) is now given by 

L = χ – 1 (22)

implying that the bank never has extra liquidity. We saw above that the
case with extra liquidity corresponds to χ values with χ > χ. We can
now conclude from (9) and (11) that 

(23)

which also shows that the case with extra liquidity is impossible.
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Finally, remembering (19) and (13), we observe that the expected
profit of the banker can (in general, and not just after the “good”
signal) be now expressed as

(24)

where

(25)

Armed with these simplifications, we now move to the discussion of
the case in which the signal turns out to “bad”, i.e. η = B. There are
three choices that remain to be considered in this case: the choice of R2

at T=1 by the banker; the choice whether to withdraw or to stay, made
at T=1 by the depositors; and the choice whether to provide the prom-
ised deposit guarantee, made at T=2 by the government. To proceed,
we must now discuss bank failure and the government’s choice in
more detail. 

1.4. The deposit guarantee and the welfare function

By assumption, the welfare function that the government wishes to
maximize is

(26)

where the first term

(27)

is the aggregate utility of the depositors, us being the utility of each
staying depositor. (The withdrawing D – χ depositors include, of
course, both the impatient depositors and the withdrawing patient
depositors.) The next two terms correspond to the payoff that bank
ownership yields to the banker and to the government. The constant
multiplier ξ satisfies ξ < 1, which means, intuitively, that the govern-
ment sees less welfare value in the assets obtained by the banker than in
the assets it gets for itself. 

The fourth term represents the costs of recapitalization. We saw in
Section 1.2 that the needed recapitalization is always L , which
according to (22) equals 

L  = –L = 1 – χ
To explain the remaining two terms, it is necessary to discuss

deposit guarantee in more detail. In case of bank failure the assets of
the bank—which amount to ρ I0 = ρ, since the bank cannot have any
excessive liquid funds at T=1 in equilibrium—are divided equally
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between the χ staying depositors. By assumption, the government
makes an additional transfer τ ≥ 0 to each staying depositor in case of
bank failure. The choice of the government in the game that we
consider consists in choosing the value of τ. This implies that the utility
of each staying depositor is 

(28)

We model the deposit guarantee as the promise that the payments
to each staying depositor, 

will altogether amount to at least 1 (i.e., the principal of the deposit).
In other words, the government promises that transfer τ amounts to at
least 

(29)

The quantity F̂ is the counterpart of reliability of the government’s
promise. Being sovereign, the government can also choose not to
honor its promise, but this choice causes a fixed welfare cost F > 0. The
welfare cost represents e.g. indirect reputational costs from distrust in
government institutions, and because of it the welfare-maximizing
government can fail to provide the promised withdrawn deposits only
when providing them is sufficiently costly. Formally, we define F̂ by

(30)

We are now in the position to motivate the assumption (2), i.e.
u’(0) < 1. We conclude from (27) and (26) that this assumption
restricts the weight that consumers’ utility has in the government’s
welfare function. In general, a welfare-maximizing government might
wish to make social transfers to the depositors of a failed bank even in
the absence of any deposit guarantee (simply in order to increase their
utility). However, wishing to focus only on government spending that
is motivated by the guarantee, we shall exclude the possibility of such
transfers from our model. To exclude this, we conclude from (1) that
the maximal aggregate utility that a small transfer Δc to m bank deposi-
tors could yield is m(Δc)u’(0), while the welfare cost of those transfers is
m(Δc). Hence, the postulate that such transfers are never socially
optimal may be formulated as the condition (2), i.e. u’(0) < 1.
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2. Solving the model
We are now ready to solve the restricted model that describes the

events after the “bad” signal η = B. Solving it consists of finding the
3-tuples (R2, χ, τ ), that correspond to its Nash equilibria. Proceeding
by backward induction, we begin by solving the choice of the deposit
guarantee payment τ by the government, when the values of R2

(which is chosen by the banker) and the value of χ (which emerges
from the choices of the patient depositors) have been given.

2.1. Choice of the government at T=2

The following remark, which is a straightforward consequence of
(2) and (26), states that the government never makes payments to the
depositors that would exceed the payments motivated by the deposit
guarantee; i.e., it makes either just the promised payment τDEP or no
payment at all.

Remark 2. The transfer τ that a welfare-maximizing government
chooses is always either τ* = τDEP (i.e. the minimal transfer that is
compatible with the promised guarantee) or τ* = 0.

Obviously, the choice τ* = 0 corresponds to deposit guarantee
failure whenever τDEP > 0. On the other hand, when the bank does not
fail, and also when the assets ρ of the failed bank suffice for covering
the principal of the remaining χ deposits (i.e. when χ ≤ ρ), (29) implies
that τDEP = 0. In this case Remark 2 simply states that the government
does not make any extra transfers to the remaining depositors of the
bank. According to the following theorem, deposit guarantee failures
can occur only when the revenue from the bank’s investment is suffi-
ciently small.  

Theorem 1. If the government lets the deposit guarantee fail for
some values of the bank’s revenue ρ, there is a threshold value ρ*

GUAR  of
the revenue ρ which is such that the government lets the deposit guar-
antee fail when ρ < ρ*

GUAR  but not otherwise. The value ρ*
GUAR  is

determined by 

We can conclude from Theorem 1 that

(31)

as, of course, should be the case (since the deposit guarantee is not
needed when ρ ≥ χ ).
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For the ease of notation, we now define ρ*
GUAR = 0 if it is not welfare-

maximizing to let the deposit guarantee fail for any value of the
revenue ρ. Given this convention, Theorem 1 implies that the set of
revenue values ρ for which the government lets the deposit guarantee
fail is always the (possibly empty) interval (0,ρ*

GUAR ). We shall still
present an essential result that is concerned with the comparative
statics of ρ*

GUAR . 

Remark 3. The threshold value ρ*
GUAR  increases with the number χ

of the staying depositors. More rigorously, the deposit guarantee
cannot fail if χ is sufficiently small, and ρ*

GUAR  is strictly increasing in χ
whenever χ is such that the deposit guarantee can fail. 

Summing up, in our model the government makes only transfers
that are made necessary by the deposit guarantee. Further, the values
of the revenue ρ for which the deposit guarantee fails (if any) are below
the threshold value ρ*

GUAR , and the range of such values (if any) gets
larger as the number of the staying depositors increases. This is, of
course, because of the rising costs that payments to a larger number of
depositors cause for the government.

2.2. The choice between staying and withdrawing by the patient 
depositors 

Having found the equilibrium choice by the government at T=2, we
now turn to the choice that the patient depositors make at T=1
between staying and withdrawing. While withdrawing always
produces the utility u(1), the utility from staying depends on both the
interest factor R2 and the signal η that determines the probability distri-
bution of the revenue of the bank’s investment, hη (ρ). We shall denote
the expected utility from staying (given η = B and R2) by Eρ BuS . 

Assuming that the bad signal η = B has been observed, there are
four cases to consider when evaluating uS . Firstly, the bank does not fail
if the revenue from the investment, ρ, is equal to or larger than its
liabilities χR2. In this case each depositor receives the sum R2. Secondly,
if χ < ρ < χR2, the bank’s assets suffice for paying the guaranteed sum
(i.e. 1) to each staying depositor despite bank failure. In this case the
assets of the bank are divided evenly between the staying depositors,
so that each of them receives the sum of ρ χ. Thirdly, if ρ*

GUAR ≤ ρ < χ,
the payments to each staying depositor amount to the minimum that
is compatible with the guarantee, i.e. 1. Finally, if ρ < ρ*

GUAR , the
government fails to honor its promise, and each staying depositor
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receives only the sum ρ χ that they would receive in the absence of
the deposit guarantee. Summing up, 

(32)

We are now in the position to explain why bank runs always remain
partial in our model. Clearly, a partial bank run makes the liabilities of
the bank decrease, but due to recapitalization, there is no corre-
sponding decrease in the revenue from the bank’s investment. Hence,
as Remark 3 also implies, the probability of bank failure must decrease
as the number of staying depositors decreases, and a bank run stops
when the expected utility from staying has become identical with the
utility from withdrawing, i.e. when 

(33)

Theorem 2. The bank run is partial for any interest factor R2 > 1. In
other words, when R2 > 1, the equilibrium number χ* of the staying
depositors satisfies χ* > 0. 

The monotonous decrease of bank failure probability implies that
the number of the staying depositors has a unique equilibrium value.
This result is due to recapitalization, and it is valid even in the absence
of the deposit guarantee.13 When extra capital is available, the decision
of some patient consumers to withdraw is not a reason for the other
patient consumers to follow suit; rather, it might be a reason to stay
because it reduces the remaining liabilities of the bank. 

Theorem 3. Assume that the banker’s interest factor choice R2 > 1 is
fixed. The subgame that consists of the number of staying depositors χ
and the government’s choice of τ has a unique equilibrium. In
particular, the number χ* of the staying depositors is uniquely deter-
mined in equilibrium.

To add further intuition to Theorem 3, one should note that the
costs of recapitalization are already sunk costs when the government
decides whether to make deposit guarantee payments. However, the
earlier bank run reduces the costs that are caused by the guarantee for

13. More rigorously, the situation in which there is no deposit guarantee may be represented by
putting F = 0 and ρ*GUAR = χ. The result (32) implies also that when these choices are made the
attractiveness of staying decreases with χ.
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the remaining deposits. Hence, the bank run serves as commitment
device, as it increases both the government’s incentives to keep its
promise and the remaining depositors’ expected utility from staying,
and this makes the bank run stop at a uniquely determined point. Also,
the following plausible result is valid.

Remark 4. In a partial bank run equilibrium the equilibrium number
of staying depositors increases with the bank’s interest factor R2. In
other words, dχ* / dR2 > 0 when the bank run is partial.

2.3. The choice by the banker

We shall now consider the first move of the three-move game after
the “bad” signal. This is made by the bank, and it consists of choosing
R2. The banker aims at maximizing his expected profit in choosing this,
and the expected profit is according to (24) and (25) given by 

Defining ρBANKER as the threshold value that satisfies

  ρ (34)

we may express the banker’s profit also in the form 

(35)

Theorem 3 implies that when the interest factor value R2 has been
fixed, there is a unique value of the bank stability χ that corresponds to
an equilibrium. Finding the expected profit-maximizing value of χ is a
difficult task despite this uniqueness result. Assuming that the expected
profit (35) is positive, there are three kinds of cases to consider. 

Firstly, we remember that according to Remark 3, the deposit guar-
antee never fails when the number of staying depositors is sufficiently
small. We let χM represent the threshold value that separates the χ
values for which the deposit guarantee can and cannot fail. Since it
must be the case that ρ*

GUAR = 0 when χ = χM , we can infer from
Theorem 1 that χM is also characterized by 

 (36)

We now observe that as R2 approaches the minimum R2 = 1 from
above, the number of staying depositors must according to (32) and
(33) approach χM . (Intuitively, the interest R2 – 1 is a compensation for
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the loss that the depositor suffers when the deposit guarantee fails, and
in equilibrium this compensation approaches zero when the risk of
deposit guarantee failure approaches zero.) The profit that corresponds
to this limiting case is 

In this case the banker takes no action to stop the bank run that is
caused by the bad signal and relies completely on the government’s
promise as a tool for stopping it. 

Secondly, considering larger values of R2 , the maximization
problem might have an internal solution for which the derivative of
(35) is zero, i.e. for which

 (37)

 Thirdly, there is another corner solution to be considered: it might
be possible and optimal for the banker to increase the interest factor
R2 until there is no bank run, i.e. until χ = 1. We denote the smallest
value of the interest factor (if any) that suffices for this purpose by R2,M.

3. The welfare effects of a change in deposit guarantee 
reliability

In our model the reliability of the deposit guarantee is represented
by the cost F. As F represents the inability of the government to make
binding commitments, the search for the optimal (welfare-maxi-
mizing) value of F does not seem very meaningful; after all, F cannot,
by definition, be freely adjusted by the government. Nevertheless, we
shall address the question of how expected welfare (relative to the
probability distribution of ρ, given the signal η = B) would be affected
by changes in F. 

Considering the expectation value of our welfare function (36), it is
easy so see that the expected consumer utility

~
U is a constant, since in

equilibrium the utility of each consumer is according to (33) always
u(1). This is because in equilibrium the risks that bank failure or deposit
guarantee failure might cause to the depositors are always compen-
sated by interest payments. Hence, we may write expected welfare as

(38)
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Since we measure the reliability of the deposit guarantee by F, i.e.
by the cost of breaking it, an improvement in its reliability has a direct
negative welfare effect when the guarantee breaks down and which in
accordance with (30) shows up as an increased value of F̂. This nega-
tive welfare effect has no counterpart in the traditional bank run
models in which the guarantee is always perfectly reliable and often a
promise that one never needs to keep.  

The rest of the terms depend on (38) the reliability parameter F
indirectly, because of its influence on bank stability, as measured by χ.
In addition, the final payoff from the bank—which is divided into the
banker’s profit πBANKER and the government’s final payoff πGOV —
depends also on the interest factor R2 that the banker chooses, which is
affected by F. 

In a discussion of the aggregate effect on expected welfare, there
are three cases to consider. Beginning with the easiest case, we
consider the situation in which the banker eliminates the bank run alto-
gether by choosing the smallest interest factor R1 = R2,M that suffices
for preventing it. In this case there is no recapitalization, the banker’s
profit is identical with the final payoff from the bank, and χ = 1 so that
(38) becomes 

In the no-bank-run equilibrium the increased reliability of the deposit
guarantee will, according to Theorem 1, decrease ρ*

GUAR , and in
accordance with (33) and (32) this effect must be compensated by a
decrease in the interest factor R2,M. Intuitively, as the government takes
care of improving the stability of the banking system, the bank can
make its depositors stay also with a lowered interest factor. Now the
positive welfare effect of the improved guarantee consists solely in the
banker’s increased profits.

In the other corner solution, R2 = 1, and the bank run stops only
when there are so few staying depositors that the government guar-
antee never fails. In this limiting case the number of the staying
consumers has the value χM , which is determined by (36). Now an
improvement in the reliability of the guarantee leads to greater bank
stability (i.e. greater χM) and greater profits for the banker. It also
decreases the amount of new capital that is needed at T=1 (i.e. 1 – χM),
which is a welfare-increasing effect. At the same time, it decreases the
part of the bank’s profit that the banker is obliged to give to the

( ) ( ) ( ) ( )2,
ˆ, 1N BANKERB B BE W R u E E Fρ ρ ρχ ξπ τ= + − +
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government at T=2, which is according to the welfare function (36) a
negative effect. 

The above analysis becomes much more complicated when one
considers the internal solution in which (37) is valid. It is clear that in
the internal solution the interest factor R2 and stability χ are between
the values that they have in the two corner solutions, i.e. that in the
internal solution 1 < R2 < R2,M and χM < χ < 1. While it is also obvious
that—keeping the interest factor R2 fixed—an increase in the reliability
of the deposit guarantee improves bank stability, it is not obvious how
the derivative dχ / dR2 , which according to (37) affects the expected-
profit-maximizing choice of R2 by the banker, changes as a result of a
change in χ. It is even conceivable that a small improvement in the
deposit guarantee reliability might motivate the banker to lower the
deposit interest factor to an extent that would increase the size of the
bank run χ. To understand this possibility intuitively, we may think of
the deposit interest rate R2 as the counterpart of all the efforts that a
bank could itself make to stop a bank run. In the non-corner solution,
the government and banker are both taking steps to stop the bank run,
and an improvement in government interference—i.e. increased relia-
bility of the government’s deposit guarantee promise—can motivate
the bank to decrease its efforts to such an extent that bank stability is
actually decreased by the improved guarantee. Again, when the posi-
tive and negative welfare effects are weighted against each other, one
must consider also the increase of the welfare cost F that emerges in
case of actual deposit guarantee failure. 

We may, however, observe that the three equilibria approach each
other when F approaches the value for which the deposit guarantee
never fails (not even when χ = 1 and all depositors stay). We conclude
from (36) that this will be the case when F is at least 

FN = 1 – u(1)

Considering the limit in which F approaches FN, we observe that in
the no-bank-run equilibrium (in which χ = 1) the deposit interest factor
R2,M approaches 1 from above, and in the maximal-bank-run equilib-
rium (in which R2 = 1) the bank stability χM approaches 1 from below.
In the limit in which F = FN one reaches the trivial equilibrium that
occurs also after the good signal η = G, and in which there is no bank
run although the interest factor is 1 and the depositors do not get
interest for their deposits.
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4. The effects of the EDIS on bank stability 

We now apply the insights from our new framework to the EDIS.
The natural field of application of our framework is a crisis that is suffi-
ciently large to make the assets of deposit insurance funds insufficient,
implying that reimbursing deposits may involve a political decision to
provide additional funding for the reimbursement. In the case of a
national deposit insurance scheme, the decision would normally be
made by the government, while in the case of the EDIS the counter-
parts of the “government” of our model would be the Single
Resolution Fund and—should the single Resolution Fund be unable to
fulfill its task—its backstop. The decision to make use of the backstop
would be a political decision and quite analogous with the decision
that the government makes at T=2 in our model. More specifically, in
the Commission proposal the backstop would be deployed only if the
decision to deploy it were backed by 85% of the votes of the member
countries (European Commission, 2017b, p. 6). 

Our model allows us to give precise formulations to two opposite
effects of a shared deposit insurance scheme. Firstly, consider a crisis
that is restricted in size, such as a financial crisis in a single eurozone
country or the crisis of a single large bank. Our framework leads to the
conclusion that in the case of a restricted crisis, the shared deposit
insurance scheme tends to improve the stability of the banking sector
(measured by the size of bank runs). This conclusion is normally
supported by referring to the better diversification that a larger insur-
ance company or fund provides. However, in our model the shared
scheme is a “diversification device” in a more abstract sense. 

As already discussed earlier, the government’s costs from a deposit
guarantee breakdown are in our model indirect (as they consist of
reputational costs and e.g. reduced trust in government institutions),
but the costs from reimbursing depositors of a failed bank are direct.
The indirect costs grow when the deposit guarantee area grows, which
can be represented as growth of the guarantee failure cost F in our
framework, while the direct costs are not affected by the size of the
deposit guarantee area. In other words, in case of a regional bank crisis
we may argue that the costs from a deposit guarantee breakdown are
increased by the shared deposit insurance scheme (since the “reputa-
tional” cost is now faced by the whole EU Banking Union) without a
corresponding increase in costs from reimbursing deposits. In our
model this should make a deposit guarantee breakdown less likely and
reduce or altogether eliminate partial bank runs. (In reality it might, of
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course, also happen that the national deposit insurance fund is insuffi-
cient for the needed reimbursements, while a shared deposit insurance
fund suffices for them, in which case a shift to the EDIS would alto-
gether eliminate the government decision that occurs in our model.)

On the other hand, the stability effects of introducing the EDIS
might be ambiguous in a systemic crisis that affects the whole Banking
Union and leads to the use of the backstop of the Single Resolution
Fund. In our model there is just a single bank, and a natural way to
apply the model to a crisis of the whole deposit guarantee area would
be to think of the bank as a representative “average” bank and of the
cost F as the reputational cost of deposit guarantee failure, divided by
the number of banks in which such failures occur. Under this interpre-
tation a change of scale would not by itself cause any changes in the
above analysis, if the aggregate reputational cost F grew in proportion
to the size of the deposit guarantee area. In other words, one would
arrive at the conclusion that the changing size of the deposit guarantee
area (e.g. shifting from a national deposit insurance scheme to the
EDIS) is irrelevant when a severe, systemic crisis hits the whole area
equally.

However, the “reputational cost” F represents also the depositors’
trust in the deposit insurance scheme, and such trust—as the example
of the Greek “bank jog” in 2009-2012 shows—is not identical in all the
eurozone countries. If under the EDIS the reputational cost and the
corresponding depositor trust reflected some weighted average of
member countries’ national levels of trust before the introduction of
the joint scheme, we could conclude that the EDIS tends to decrease
the danger of partial bank runs in the countries in which there is less
trust in the national deposit insurance than in the eurozone on the
average. However, the opposite might be the case in the countries in
which national institutions are trusted more highly. 

In addition, it might be excessively optimistic to view the trust that
depositors feel for the EDIS as an average. After all, trust depends also
on the ability of our model’s “government” (which is in the literal sense
a government in the national deposit insurance schemes, and the back-
stop and other EU institutions in the EDIS) to make fast decisions. Such
decisions might be more difficult for EU institutions than for national
institutions in a systemic crisis e.g. because of the required 85%
majority. One policy implication hence is that in order for the EDIS to
achieve its full potential stability benefits, the backstop should be
designed to be as credible as possible. 
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5. Concluding Remarks

We have considered bank runs that are caused by the suspicion
that, in spite of its promises, a government might not protect deposits
during a severe future crisis. In this setting, bank runs are quite different
from those in more traditional models, in which they occur in the
absence of a deposit guarantee and are caused by the fear that a
shortage of liquidity might lead to an immediate bank failure. In the
absence of a deposit guarantee, traditional models of bank runs (e.g.
Diamond and Dybvig, 1983) have two equilibria: the one in which no
one has an incentive to withdraw his deposits (except for immediate
consumption needs) because other depositors do not withdraw theirs,
and the other in which all depositors withdraw simultaneously. In
contrast, we have assumed that the government always bails out banks
by providing recapitalization if banks have a liquidity shortage in the
absence of a crisis. Nonetheless, as the government may break its
deposit guarantee in a severe crisis, bank runs may still occur.

Our model provides a simple explanation for why bank runs can be
gradual and partial, as has been recently often observed, e.g. in the
eurozone. As deposits are withdrawn during a bank run, the govern-
ment’s future liability of guaranteeing the remaining deposits is
gradually reduced. This increases the government’s incentive to honor
its promise, because the cost of breaking its guarantee (which might be
caused by e.g. reputational concerns) does not diminish like the
remaining payments. This in turn decreases the remaining depositors’
incentive to withdraw. Eventually, there is a unique point when the
bank run stops. As an application of our model, we contrasted the EDIS
with national deposit guarantee schemes and concluded that while the
EDIS probably tends to improve bank stability (measured by the size of
bank runs) in bank crises of a restricted size, the opposite could also be
the case in a systemic crisis that affects the whole eurozone. The effects
of introducing the EDIS might also differ in different countries,
depending on whether the citizens have more trust in national than in
EU-level institutions, or vice versa. 

From the point of view of economic theory, it is worth emphasizing
that the above mechanism renders the equilibrium of our model
unique, although we do not make use of the global games framework
that is in essence more complicated mathematically (cf. Goldstein and
Pauzner, 2005). Our analysis could be extended in a variety of direc-
tions. For example, it would be quite interesting to study the
alternatives to our postulated liquidation procedure and to introduce
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monetary policy and asset markets into the model (cf. Allen and Gale,
1998), to study the effects of various types of government guarantees
analogously with Allen et al. (2018), or to try to address the moral
hazard problems that the EDIS might cause for the governments whose
sovereign debt is held by domestic banks.

One of the interesting generalizations of our model is the following.
In our model the government reduces the future cost of its own deposit
guarantee liability when it provides liquidity to a bank so that the bank
can weather a partial run on deposits. In this way, liquidity provision, or
recapitalization, serves as a commitment device, which makes a deposit
guarantee breakdown less likely. This works out because we have
assumed that the cost of the government’s liquidity provision before a
crisis is a sunk cost. A possible extension to our analysis would be to
assume that liquidity provision is not a sunk cost completely, but
increases sovereign debt and contributes to the government’s financial
distress when the deposit guarantee is in danger of breaking down.
This would most likely reduce bank stability in the setting of our model. 
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